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Abstract 
We present a novel approach for modeling heterogeneous objects 
containing entities of various dimensions and representations 
within a cellular-functional framework based on the implicit 
complex notion. We provide a brief formal description for 
implicit complexes and describe their structure; in particular we 
describe both the geometry and topology of cells of different 
types. Then we consider the necessary basic operations over IC’s 
components and the set-theoretic operations over objects 
represented by ICs. Finally, we present a case-study showing how 
to construct a hybrid model integrating both boundary and 
function representations. 
Keywords: Computational geometry, object modeling, implicit 
complexes, hybrid modeling, object representations. 

1. INTRODUCTION 

Heterogeneous objects modelling is becoming an important 
research topic in different application areas such as volume 
modelling and rendering, modelling of objects with multiple and 
varying materials in CAD and in rapid prototyping [6]. Such 
objects that can represent the results of physical simulations, 
geological and medical modelling, etc. are heterogeneous from 
the points of view of their internal structure and their 
dimensionality. This paper presents our recent advances in 
developing a novel framework for heterogeneous object 
modelling which is based on the concept of an Implicit Complex 
(IC) that was first introduced in [1]. Within this framework, we 
proposed a way of constructing a hybrid model which is not 
supposed to serve just for the combined usage of separate 
representations but is genuinely unified. In particular, we tackle 
the very practical problem of the integration of the boundary 
(BRep) and function (FRep) representations - along with a 
cellular representation - into a unified model thus keeping all the 
advantages that these particular representations have and 
supporting descriptions of different material and other non-
geometric properties. 
The IC describes composite heterogeneous objects consisting of 
several components that can differ in their dimensionality, 
geometric representation and non-geometric attributes. The IC-
based hybrid framework provides a unified description of a 
heterogeneous object’s geometry and topology. An object is 
described as the union of cells of various representation types and 
dimensionalities along with the relations between them. The main 
relations characterizing mutual locations of cells are the boundary 
and the “to contain” relations. Non-geometric attributes are 
independently described by functional or cellular models and are 
associated with IC’s cells by means of relations provided that 
some constraints are satisfied. 

In our previous papers [1], [8], we introduced an IC’s general 
structure and described some basic procedures of IC-based model 
construction along with suitable discretization methods. In this 
paper, we consider the application of the set-theoretic operations 
over heterogeneous objects within the IC framework. Our 
particular focus in this paper is on the construction of hybrid 
models unifying components represented by BReps and FReps.  
The paper structure is as follows. Section 2 reviews some related 
works concerning the modeling of heterogeneous objects. We 
give an outline of a formal IC framework in Section 3. The 
necessary basic operations over IC’s components are considered 
in Section 4 and the set-theoretic operations are described in 
Section 5. Section 6 presents some examples. 

2. RELATED WORKS 

A typical technique for describing heterogeneous objects is to 
represent them as collections of homogeneous components. Both 
topological subdivisions and constructive procedural methods can 
be used to combine such components. The former include 
geometric complexes [13], CW-complexes [9], selective Nef 
complexes [5], and others. The latter are Structured Topological 
Complexes (STC) [12], the constructive hypervolume model [11], 
and the hybrid constructive trees [2],[3]. 
In the STC framework [12], a composite object is defined using a 
combination of layers each of which is described by a geometric 
complex, which is homogeneous with respect to the 
representations of the components. The hypervolume model 
supports uniform constructive modelling of point set geometry 
and attributes using real functions of point coordinates. The 
HybridTree [2] is a constructive tree with leaves defined by a 
number of representations (implicit surfaces, polygonal meshes, 
and discrete point sets). Both the function evaluation and the 
surface mesh generation are provided for modelled objects. 
Depending on the user’s query, corresponding conversions 
between representations are applied. A hybrid constructive tree in 
[3] has leaves with both implicit and parametric representations. 
To polygonize the surface of a complex object, surface meshes of 
primitives are classified against the subtree defining function, 
trimmed, and merged into the resulting mesh. However, both 
these approaches do not support heterogeneous objects with 
components of different dimensionalities and do not provide a 
description of the topological structure of the object being 
modelled.  
In [1] we introduced a hybrid cellular-functional model based on 
the notion of an IC, which provides a valid topological description 
of heterogeneous objects and allows for the flexible combination 
of cellular and functional representations of the geometry of 
objects and their attributes. In [8], we showed how this framework 
can be exploited for representing some heterogeneous models 
without using set-theoretic operations. In this paper, we describe 
an extended structure of an IC and then concentrate on the 
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constructing the ICs, especially using set-theoretic operations. 
Set-theoretic operations on polyhedral topological complexes 
were previously discussed in [5]. Here we consider the specifics 
of these operations caused by the heterogeneous structure of ICs 
containing BRep and FRep components. 

3. IMPLICIT COMPLEXES 

In this section we provide a brief description of the theoretical 
framework that is based on the Implicit Complex (IC) notion. 

3.1 IC basic definition 

We consider a hybrid model of a geometric object 3ED ⊂  
defined in Euclidian modelling space 3E  as the union of cells 

iq
ig  under the following conditions:  

1) Each cell iq
ig is a closed point set 3Eg iq

i ⊂  
unambiguously described by some known geometric 
representation which provides geometrically and topologically 
correct discretization of the cell. Here i denotes the index 
number of cell and qi is its dimension.  
2) The boundary iq

ig∂ of each cell iq
ig  is the union of a 

finite number of cells of lesser dimensions;  
3) Cells can overlap each other but the intersection of any 
two cells is either the union of a finite number of cells or is 
empty. Note that we call the cells satisfying conditions 2 and 3 
as properly joined cells. 

A collection K of cells satisfying the above conditions is called an 

implicit complex (i.e.: N
i

q
i

igK 1}{ == ). The point set union of all 
cells of an IC K is denoted by |K| and called a carrier of K. Thus 
formally, the hybrid representation for a geometric object D is 
defined as || KD = . The dimension of an IC is the maximal 
dimension of its cells. In accordance with the IC definition, 
polyhedral, cellular and CW complexes are also represented in 
the IC framework. 
The ICs allow us to describe objects of different dimensionalities 
consisting of components represented by various geometric 
models. The above conditions of the IC definition actually ensure 
the ability to convert an arbitrary IC K into a polyhedral complex, 
which approximates, geometrically and topologically, the object 
D being modeled. In fact, the reducibility of each of the used 
representations to a polyhedral one guarantees a correct execution 
of any operation over objects described by various 
representations. However, we strive to exploit advantages of 
different types of representations; that is why we keep the initial 
representations for components of the model and use meshes only 
for the implementation of various numerical procedures applied in 
topology analysis, computational geometry and finite element 
analysis. 
The support of overlapping cells allows for inserting components 
of a composite object into its IC model without any subdivision. 
To satisfy the IC definition, extra cells describing mutual 
intersections of the components are added to the complex. This 
allows for the preservation of the initial representations of 
components, which is useful for heterogeneous object modeling. 
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Figure 1: A 2D implicit complex. 

Fig. 1 shows an example of an IC based 2D model. The model 
describes an object consisting of two 2D components (rectangles 
DCIJ and EFGH) and one 1D component (segment OM). We 
assume that the components are represented by different methods 
and have different non-geometrical properties (attributes). One of 
the possible IC representations of this heterogeneous model is 
described by the following complex K consisting of three 2D 
cells: rectangles 22

,
2

, EFGHEFKLDCIJ ggg ; seven 1D cells including 

two closed polylines 11
, EFGHDCIJ gg , one non-closed 

polyline 1
KFELg , three segments 11

,
1

, ONOMKL ggg ; and five 0D 

cell points 00
,

0
,

0
,

0
, MNOLK ggggg . According to the IC definition, 

the complex K includes cells describing the initial components 
( 22

, EFGHDCIJ gg , 1
OMg ), their boundaries 

( 11
, EFGHDCIJ gg , 00

, MO gg ), and cells representing the mutual 
intersections between the listed initial ones. Thus the cells 

22
, EFGHDCIJ gg  preserve the initial representations of the 

corresponding components and the cell 2
EFKLg  describes their 

intersection. 
We also introduce the concept of a subcomplex, which is a means 
of aggregation inside the IC. Formally, an IC L, is called a 
subcomplex of IC K, if the collection of cells of IC L is a subset of 
the collection of cells of IC K. For example, the following cell 
collections define the subcomplexes of IC shown in Fig.1: 

},,{ 001
,

11
,

1
,

2
,

2
,1 LKKLKFELEFKLDCIJEFKLDCIJ ggggggggL = ,

},{ 12
2 EFGHEFGH ggL = , }{ 12

,3 DCIJDCIJ ggL =  

We call two implicit complexes properly joined if their cells 
altogether satisfy conditions 1 and 2 of the IC definition. Thus, 
the subcomplexes 2L  and 1L  of the IC shown in Fig.1 are 
properly joined but 3L  and 2L  are not.  

An IC provides a consistent description of both the geometry and 
the topology of a modeled object. Its geometry is represented by 
the geometry of the individual cells and its topology is described 
by means of the relations between cells. 

3.2 The IC Topology 
The general structure of a 3D IC is illustrated by Fig. 2. By 
definition, a 3D IC consists of 0D, 1D, 2D, and 3D cells. 

Let pG  be a set of p -dimensional cells p
ig . There are two main 

types of relations that establish connections between cells of 
different dimensionalities: the boundary relation and the “to 
contain” relation. According to the conditions of the IC definition 
the mutual disposition of any of the IC cells can be evaluated 
through queries to its main relations. 
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We denote by psRb  the boundary relation between p-

dimensional and s-dimensional cells, spps GGRb ×⊂ , ps < . 

The pair ( s
j

p
i gg , ) belongs to psRb  if s

jg  belongs to the 

boundary of p
ig  and does not lie in the interior of any other 

boundary cell of p
ig . The relation “to contain” is denoted by 

psRc , spps GGRc ×⊂ , ps ≤ . The pair ),( s
j

p
i gg belongs 

to psRc  if p
i

s
j gg ∈  and s

j
p
i

s
j ggg ≠∂∩ . The entire structure of 

3D IC is defined by six different boundary relations and nine 
different “to contain” relations. Other relations are the co-
boundary, the “to be contained”, the incidence and the adjacency 
relations. These can be derived from the boundary and the "to 
contain" ones using various operations on relations. 
 

 
Figure 2: The general structure of a 3D IC. 

 
Thus the description of an implicit complex K consists of the 
collection N

i
q
i

igG 1}{ ==  of cells and the sets of boundary Rb 
relations and “to contain” Rc relations, i.e. >=< RcRbGK ,, . 

3.3 The IC Geometry 
According to the IC definition, a variety of representations can be 
used for the description of cell shapes, but all of these 
representations should guarantee a conversion into the mesh 
described by a polyhedral complex. 
We have introduced and implemented the following five types of 
IC cells that differ in their geometric representations but are 
topologically uniformly related to each other. This set of types 
can be extended in the future and currently includes:  

• The P-cell, which is an explicit cell representing a simple 
polyhedron of an appropriate dimensionality. 

• The B-cell, which is a cell representing a manifold defined by 
its boundary. B-cells describe segments of parametric curves, 
patches of parametric surfaces and boundaries defining 3D 
solids A 1D (2D) B-cell is defined by its supporting curve 
(surface) and by its oriented boundary. A 3D B-cell is defined 
by its oriented boundary only. In the general case the 

boundary of a B-cell can consist of cells of all the other types 
supported in the IC framework.  

• The F-cell, which is an implicit cell described by the FRep 
that is a constructive representation by real-valued functions 
in the form of an inequality 0)( ≥XF  [10]. We restrict a 
valid variety of 2D and 1D FRep objects by s-dimensional F-
cells (s<3) to those which are represented as subsets of the 
boundaries of 3D manifolds. Thus a 2D F-cell is described by 
a pair ),( MFF and a 1D F-cell is described by 
triple ),,( 21 MM FFF  where 21,,, MMM FFFF  are real-valued 
functions of point coordinates, such that function F describes 
the point set of the corresponding cell and other functions are 
used to describe the underlying 3D manifolds in the form 

0)( ≥XFMi . 

• The C-cell, which is a composite cell aggregating cells of 
various types. Each C-cell is defined as the carrier of an 
implicit complex T differing from the complex K containing 
this C-cell. The complex T can consist of the cells of all types 
supported in the IC framework. The complex T is not a 
subcomplex of K. Its cells are not properly joined with respect 
of the cells of K.  

• The T-cell which is a cell described by a constructive tree. Its 
leaves represent objects described by cells of all the other 
types. The tree nodes represent operations admissible for the 
IC – in particular, some bijective geometric transformations, 
non-regularized set-theoretic operations and trimming by 3D 
manifold. The T-cells allow for the description of the results 
of applying set-theoretic operations to cells of different types 
without the need for converting representations of one type 
into another.  

 

 

 

 
a)   b) 

 
c) 

Figure 3: The unified hybrid model combining an FRep Turtle 
(courtesy of G. Pasko) and a BRep Bunny (Stanford 3D Scanning 

Repository) a) The general view of the model  
b) The contact zone c) The structure of the IC 

Various types of cells are illustrated by Fig. 3 showing an 
example of the IC describing a hybrid model combining FRep and 
BRep components. This IC consists of two 3D cells and three 2D 
cells (see Fig. 3c). The 3D B-cell describes the bunny’s body and 
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the 2D C-cell represents its boundary defined by a triangular 
mesh. The turtle’s body and its boundary are represented by the 
3D F-cell and the 2D F-cell, correspondingly. Finally, the 
intersection of the bunny and the turtle called a contact zone is 
described by the 2D C-cell. The contact zone is illustrated by Fig. 
3b. 

3.4 The Attribute Model 
In this section we briefly describe a cellular-functional 
representation of attributes associated with an IC. Each attribute 
Λ  is described by a set ΛN  of its values embedded into a 

multidimensional real number space Λℜm  of a proper 
dimension Λm . For the sake of uniformity, we assume that the 
value set ΛN  of each attribute is supplemented with a special 
“empty” value θ  and so all the attributes are defined at each 
point of the modeling space Ω . The attribute values are assigned 
to geometric object points described by the IC K using a 
collection of attribute functions JjjSS ,1}{ =ΛΛ =  and a set of 

attribute relations },,,{ 0123
ΛΛΛΛ=Λ RsRsRsRsR . So an attribute 

Λ  of an IC K is represented as >=<Λ ΛΛ RsS , . Each function 

jSΛ of an attribute Λ  maps the modeling space Ω  into the 

attribute value set ΛN , ΛΛ →Ω NS j : . Attribute functions can be 
analytic, piecewise analytic or be defined by an interpolation 
methods [1]. 

The relations pRs Λ  (p=0,1,2,3) associate functions of an attribute 

Λ  with cells of the IC K, that is Λ×⊂Λ SGRs pp , where pG is a 

set of all p -dimensional cells p
ig  of the complex K . If 

p
j

p
i RsSg ΛΛ ∈),(  then the value of the attribute Λ  at any point 

|| p
igX ∈  is defined as )(XS jΛ .  

Only one function of each attribute can be associated with a cell. 
Taking into account that IC cells can overlap each other, we 
propose priority and additive schemes for calculating the value of 
an attribute Λ  at an arbitrary point X  of the object represented 
by the IC K. According to the priority scheme, we look through 
all the cells associated with the attribute Λ  and containing the 
point X  and select one cell of the lowest dimension which does 
not contain other cells associated with Λ  within it. The value of 
the attribute function defined on that cell is used for calculating 
the attribute value at the given point. According to the additive 
scheme the value of the attribute Λ  at the point X  is calculated 
as a blend of the attribute functions associated with all cells 
containing the point X.  
 

3.5 Implementation Model 
We have implemented software for cellular-functional modeling 
of heterogeneous objects within an object-orientated framework. 
Let us outline the principal classes which are directly derived 
from the presented theoretical description. 
The basic IComplex class represents an implicit complex data 
structure (Fig.2 is an illustration). Its attributes represent six 
boundary relations and nine “to contain” relations as well as cells 
of various dimensionalities. The methods of the IComplex class 

realized the operations over cells of the complex (see Section 4) 
as well as operations over ICs (see Section 5). The IComplex class 
includes operations for modifying the relations as well as inquiry 
operations on the relations. 
Each relation is described by the object of the Relation class 
which contains all the pairs of numbers of related cells. The 
operations of the Relation class allow us to get the indices of all 
the related cells as well as to add and delete pairs of cells. 
The IC geometry within the IComplex class is specified using 
objects of classes inherited from the abstract Shape class that 
contains virtual operations for defining the point membership as 
well as for rendering and discretization. 

4. THE BASIC OPERATIONS IN THE IC 
FRAMEWORK 

Here we introduce basic operations over cells, subcomplexes and 
entire implicit complexes. These operations are especially 
important in the context of constructing and manipulating implicit 
complexes. For each operation, there are constraints on input data 
that should be checked before their actual evaluating.  

Cell_adding adds a new cell to IC. Cell rg  can be added to IC K 

if rg  is properly joined to all the cells of K and the boundary of 
rg  is represented as the union of cells of K. The input data of the 

procedure include the cell geometry description and the list of 
cells of K related to the cell being added. 
Attribute_adding defines an attribute on K. The input data include 
a collection of attribute functions and the list of cells of K being 
associated with this attribute.  
Cell_removing deletes a cell from IC. It is follows from the IC 
definition that cell r

cg  can not be deleted if one of the following 
conditions or both of them are satisfied  

1) Cell r
cg  has co-boundary cells in K.  

2) Cell r
cg  represents the intersection of some other cells of K. 

These conditions are checked automatically using IC relations. 
Cell_cutting removes a cell with all its boundary cells from IC. It 
is implemented under the same restrictions as the Cell_removing 
operation.  
IC_adding implements sum operations over properly joined 
complexes. Given any two properly joined implicit complexes C 
and T, the sum of C  and T  is a complex M consisting of all the 
cells of the complexes C  and T , this is denoted as TCM ⊕= . 
The boundary relations and the relations “to contain” of M are 
automatically formed on the base of the same relations defined on 
the complexes T, C. Attributes are established on the IC M by 
combining those ones defined on the initial complexes C and T 
using an appropriate mixing function. Suppose an attribute Λ is 
described on both the ICs C and T. To set this attribute of M we 
look through all the cells of M, and for each r

mg  of M we find its 

equivalent cells in the complexes C and T. If r
mg  has only one 

equivalent cell then it inherits an attribute function from this cell. 
Otherwise, the attribute function is calculated by blending the 
attribute functions defined on the cells equivalent to r

mg . 
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IC_transform implements bijective geometric transformations 
over ICs including affine transformation and nonlinear bijective 
transformations. 
 
The IC_meshing procedure implements the conversion of the IC 
representation into the simplicial one. The discretization of IC 
models are guaranteed by the IC definition according to which the 
appropriate mesh generation methods have to be available for all 
types of the IC cells. The discretization of an implicit complex K 
is implemented as an iterative process. The mesh generation of 
each kind of cell is implemented using specific meshing 
algorithms. An extensive survey of discretization methods are 
presented in the book [4].  We subdivide IC cells in the order of 
their increasing dimensionality. Among the cells of the same 
dimensionality we first subdivide those ones which do not contain 
other yet unprocessed cells. Thus, at the moment of the meshing 
of a cell we already know the discretization of its boundary and 
the subdivision of all the cells lying inside the considered one. 
Then we subdivide the cell into mesh elements such that they are 
compatible with other meshes which already belong to it. The 
corresponding incremental mesh generation approaches that allow 
for preserving existing mesh elements can be found in works [2], 
[7] and in the references contained in these works.  
  

5.  THE SET-THEORETIC OPERATIONS  

Set-theoretic operations are the main mechanism for constructing 
composite geometric objects starting from more primitive ones. In 
the IC framework, we introduce the union and intersection 
operations over ICs with attributes. Given two implicit complexes 
A and B, the intersection of A and B is an implicit complex С 
whose carrier is equal to the set-theoretic intersection of the 
carriers of A and B, BAC ∩= . The union of two implicit 
complexes is a complex whose carrier is equal to the set-theoretic 
union of the initial complexes. Thus we consider the non-
regularized set-theoretic operations. The difference operation is 
more problematic as a mere set-theoretic difference of the carriers 
results in non-closed objects. So we consider the restricted version 
of the difference operation, namely, trimming with a 3D manifold. 
Let the IC B represent a 3D manifold; then the result of trimming 
the IC A by the complex B is a complex C whose carrier is equal 
to the set-theoretic intersection between the carrier A and the 
point set described as the inversed carrier of B (that is the cavity 
in the whole solid space). We denote this operation as BAC −= .  

We propose four procedures for the implementation of the set-
theoretic operations. Each of them takes two input ICs A and B 
and returns the IC C. The intersection and the trimming 
operations are implemented as the procedures IC_intersection and 
IC_trimming, correspondingly. There are two procedures 
implementing the union operation, namely, IC_union and 
IC_subtractive_union. The procedure IC_union returns the IC C 
involving all the cells of the input ICs A and B and is realized as 

BBAAC ⊕∩⊕= )( . An example of this procedure is shown in 
Fig.4.  
The procedure IC_subtractive_union calculates the union of the 
ICs A and B according to the formula ))(( ABAC −⊕= . Thus the 
resulting IC C does not include those cells of IC B which lie 
inside the carrier of A.  The example of this procedure is shown in 
Fig.5. 

 
Figure 4: The union of two ICs A and B is calculated as 

BBAAC ⊕∩⊕= )( . The IC A represents an area CED and the 
IC B describes disk IGHF. 

 

 
Figure 5: The union of two ICs A and B is calculated as 

))(( ABAC −⊕= . The IC A represents a rectangle and the IC B 
describes an arch. a) input objects; b) the result of the union 

 
The attributes are associated with the resulting IC C through the 
relations between C and the initial complexes A and B. The 
attribute functions associated with the cells of C belonging to both 
ICs A and B are calculated as a blend of the initial attributes 
functions associated with the same cells on ICs A and B. Other 
cells of C inherit attributes from their preimages in the initial 
complexes. For example, let us consider the example in Fig. 4. 
Here the attribute “hatch” is defined on the initial ICs A, B. Then 
in the resulting IC C the cells CDE and IGHF preserve those 
attribute values that were defined on the initial ICs. As to the 
attribute value in the cell FGH created as the result of the 
intersection of the cells CDE and IGHF, it is calculated as a blend 
of the attribute values defined on those cells.  
 
A detailed description of algorithms for the set-theoretic 
operations on ICs is beyond the scope of this paper. Here we 
briefly consider the implementation of the IC_intersection 
operation. Other set-theoretic operations on ICs are implemented 
on the base of this one. To build the IC BAC ∩= , we at first 
perform the discretization of the initial ICs and then convert them 
into simplicial complexes. Then we evaluate non-regularized set-
theoretic intersection between these simplicial complexes. To do 
this, one can apply the methods similar to those developed for 
geometric complexes [13]. After that, we aggregate the simplexes 
of the resulting complex using the following rules: any two n-
dimensional cells can be merged only if they have a common 
boundary, the same co-boundary cells and if they are shared by 
the same cells in the initial ICs. In all the previously described 
operations we support information about relationships between 
complexes. So it is known for each aggregated cell what was an 
initial cells in the implicit complexes A and B. Preserving such an 
information allows us to build boundary, constructive or 
functional description of the aggregated cells depending on the 
types of the initial cells whose intersection these aggregated cells 
represent. Thus we convert aggregated cells into IC cells to get 
the desired complex C. 
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The IC_trimming operation is realized as the intersection of the 
IC A with the IC B’ describing the boundary representation of the 
point set  -|B| which is a cavity in the modeling space. The 
complex B’ is formed using the discretization procedure of the IC 
B followed by the boundary evaluation operation producing the 
boundary description of the cavity. 
 
According to our intersection algorithm, the resulting IC C is 
properly joined to complexes A and B.  This allows us to 
implement the union of ICs through the sum of properly joined 
ICs A, B, and )( BA∩  (IC_union) or through the sum of properly 
joined ICs A and (B-A)  (IC_subtractive_union). 
 

6. CASE STUDIES 

Here we present examples of heterogeneous objects that were 
constructed based on the theory presented above. 

6.1 A flower model 
This example illustrates how to create the IC describing the 
hybrid model of the object D , which is sequentially being built of 
the heterogeneous components jd  using set-theoretic union 

operation over initial components. The object D  also has the 
non-geometric attributes. 

The construction process for IC K which represents the hybrid 
model of the object D  ( || KD = ) is performed in a component-
wise manner, starting from ∅=0K . At each step j, the component 

jd is represented by the complex Tj containing just one cell 

describing jd  together with one or a few cells of lesser 

dimensionalities describing the boundary jd∂ . Complex Tj is 

formed using the Cell_adding operation. Then we get IC jK  as 
the result of the set-theoretic union between the already created 
IC 1−jK  and IC Tj representing the new component jd . In our 
example we use the IC_subtractive_union operation for 
construction jjj TKK ∪= −1 . As the result we get the IC K. 

 
Figure 6: A flower modelled as an IC.  

To create a model of such a composite object as a flower (see Fig. 
6), we start from modelling its separate components (see Fig. 7). 

 
Figure 7. Components of a flower 

 
The receptacle, the pistil and the stamens are defined by the 
functional representation. The receptacle is described as a half-
ellipsoid combined with a solid noise function (algebraic sum 
with Gardner’s noise function). The pistil is defined as the result 
of the blending union of ellipsoids. Each stamen is defined as an 
algebraic sum of an ellipsoid and Gardner’s solid noise function. 
ICs Tj describing the listed components consist of the 2D and 3D 
F-cells.  

The 2D petals and sepals are described by BRep surface patches 
which are modeled in two steps. First, an object is described in 
2D space as an area bounded by a large ellipse and two smaller 
ones (representing the holes). Then, tapering and general space 
mapping deformations are applied to the object. Complexes Tj 
describing the petals consists of the 1D and 2D B-cells. 

The filaments are explicitly defined by the spline curve segments 
defined in 3D space. The corresponding ICs consist of the 1D B-
cells. 

We consider the flower as a heterogeneous object which has a 
color property. This is represented by an RGB colour attribute 
which is described by the function 33 ℜ→= ES  in a piece-wise 
manner, so that }{ iSS = , where each Si maps the corresponding 
subset of E3  into the RGB space. We use the Attribute_adding 
operation to associate color with cells of ICs Tj representing the 
flower components  

Complex K  describing the entire heterogeneous model of the 
flower is calculated automatically as the result of iterative 
application of the IC_subtractive_union operation. Complex K 
consists of cells corresponding to different flower components 
and includes auxiliary cells providing the validity of the IC 
model. These auxiliary cells describe interconnections between 
the flower components. Figure 8 shows a fragment of the IC 
representing the flower model. The receptacle is described by the 
3D F-cell 3

1t , the pistil by the 3D F-cell 3
2t , the stamen by the 3D 

F-cell 3
0t , the filament by the 1D B-cell 1

0e , and the petal by the 

2D B-cell 2
0t . The auxiliary cells are 0

0e , 0
1e  , 2

1t , 1
1t , 1

0t , 0
0t , 

0
1t .  
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Figure 8: The IC structure for the ‘Flower’ model. 

 

6.2 A model of a bunny riding a turtle 
When we model heterogeneous objects, different sequences 
forming their components as well as their contact areas are 
possible. In the previous example, the contact zones (mutual 
intersections) between components have been calculated 
automatically (i.e. without user efforts) on the basis of object 
components data. Let us consider an example where contact zone 
modelling is crucial as it influences the disposition of 
heterogeneous model components. Such an application can be 
called “fitting the object A to the object B”. We suppose that we 
initially have two separately designed objects A and B. First, we 
form a desired contact zone C. Then we translate the object A and 
simultaneously deform it to make it possible to intersect with the 
object B along the contact area C. To do so, it is necessary to 
specify the correspondence between the points of A and C. The 
deformation itself also needs to be specified. Both physically-
based and ad hoc methods can be used here. 
As an illustration, let us consider a case study representing the 
Stanford Bunny riding a turtle (see Fig. 3) where the BRep object 
A defines the bunny model and the FRep object B represents the 
turtle model (see Fig.9a). According to the IC construction 
procedure, we start with IC representing the initial components. 
The IC 1T  describing the object A consists of one 3D B-cell (the 
bunny’s body) and one 2D C-cell (the triangulated boundary 
surface of the bunny). The IC 2T  specifying the object B consists 
of one 3D F-cell (the turtle’s body) and one 2D F-cell (the turtle’s 
boundary).   
The procedure allowing us to attach the bunny to the turtle and to 
construct the hybrid IC model includes the following steps: 
I. Construction of the contact zone. In this example the 
components have to intersect each other along their boundaries. 
So the contact zone is a surface patch. 
1. Extract the mesh on the horizontal bottom of the bunny (see 

Fig. 3b, upper left), keeping the correspondence between 
the extracted part and the main mesh and copying it to a 
separate mesh – this will be the future contact surface C 
called “a saddle”. The initial mesh selected on the bottom of 
the bunny is shown in Fig. 3b (left); 

2. Select two corresponding local coordinate systems, one on 
the turtle back and one on the saddle;  

3. Using a linear transformation that combines a number of 
rotations and translation match the saddle’s local coordinate 
system with that of the turtle; 

4. Put the saddle on the turtle back by finding projection of all 
the saddle vertices on to the boundary surface of the turtle 
(all the vertices are moved in the direction defined by the 
gradient of the function describing the turtle boundary). The 
resulting mesh representing the contact zone on the back of 
the turtle is shown in Fig. 3b (right); 

5. Form the IC representation 3T  of the contact zone. It 
consists of one 2D C-cell combining all the elements of the 
contact zone mesh and one 1D C-cell specifying the 
boundary of the mesh. 

 
II Deformation of the bunny. 
1. Move the bunny to the turtle applying the same 

transformation as in the step I.3; 
2. Using the free form space deformation technique deform the 

entire bunny so that points of the bunny bottom coincide 
with the corresponding points of the contact zone. 

III Construct the resulting IC K describing the hybrid model (see 
Fig.3c). We get the IC K as the sum of the properly joined ICs 

321 TTTK ⊕⊕=  applying the IC_adding procedure.  

The unified hybrid model combining the bunny and the turtle is 
shown in Fig. 3. The total run time for this example is about 3.5 
seconds on a PC with a Pentium 4 3.2GHz processor and 1Mb 
RAM. Finally, to show how one can make a transformation of a 
unified model, we deform the produced heterogeneous IC model 
applying some non-linear bijective transformations implemented 
by the IC_transform procedure. The total run time for the 
construction of this hybrid model with transformations is about 4 
seconds. The corresponding model after such transformations is 
shown in Fig. 9b and 9c. 

 
a) 

     
               b)                                                 c) 
Figure 9: The unified hybrid model combining the FRep turtle 

and BRep bunny after the attachment (a) and after the subsequent 
deformations (b, c) 
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7. CONCLUSION 

Implicit complexes provide a novel framework that makes it 
possible to model heterogeneous objects exploiting hybrid 
representation schemes. In this paper we outlined the IC model 
and operations defined on ICs. We proposed a step-by-step 
construction procedure for important particular cases involving 
the integration of components BRep and FRep components using 
a union operation and an attachment operation over implicit 
complexes. We have also demonstrated that the unified model can 
be further transformed. These case-studies have allowed us to 
show such benefits of this approach as preserving the initial 
representation of all the components and guaranteeing 
topologically correct definitions for all parts and relationships. 
The main advantages of the proposed way of modeling complex 
assemblies include the preservation of the original representations 
of all the components (independent of how different they may be) 
and the ability to guarantee topologically correct definitions for 
all parts and relations of the hybrid model (in particular for 
problematic regions belonging to the boundaries). This approach 
also allows us to handle conformity between the object’s 
geometry and its attributes representing non-geometric properties 
that are crucial for heterogeneous modeling. At first sight, our 
approach, relying on non-trivial topological constructs may 
appear as too complex and intimidating to the ordinary user. This 
inherent complexity of the method will eventually be hidden from 
the user by the provision of a set of library routines. Thus, the end 
user will be blissfully unaware of the underlying complexity and 
will only have to deal with conceptually simple high-level 
features of the model whose internal structure has to be generated 
automatically and can be made transparent through a number of 
high-level queries.  
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