
Simple Geometry Compression for Ray Tracing on GPU

Kirill Garanzha
1
 Alexander Bely

2
 Vladimir Galaktionov

1

1
 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

2
 CentiLeo

Abstract

In this short paper we describe simple approach to loosely

compress the vertex data for ray tracing large triangular models on

the GPU. The disadvantage of the GPU is limited memory

capacity. The advantage of the GPU is high performance

computation. Sometimes it is hard to load large models to the

GPU and we suggest compressing the vertices that form 3D

models and acceleration data structure using 16bit representations

instead of 32bit floats. At the same time the aggregate vertex

precision varies between 22 and 24 bits and the amount of cracks

is minimized. The advantages of NVIDIA CUDA platform are

used to implement our approach efficiently.

Keywords: ray tracing, GPU, CUDA, compression.

1. INTRODUCTION

Scenes for feature film rendering and CAD/medicine visualization

may have large geometric complexity and can easily contain ten

or hundred million polygons. Demands for greater photorealism,

more realistic materials, complex lighting and global illumination

push computational bounds which often results in long render

times and more research in data compression methods.

Complex lighting can be implemented with ray tracing rather

simply. However efficient ray tracing implementation on the GPU

is still a challenge. The GPUs such as NVIDIA GTX480 and

GTX580 have around 1.5Tflops of compute power and only

1.5GB of main memory. Our challenge is to load a model with

several ten million triangles to these GPUs.

One of the most popular 3D model representations is triangular

representation which encodes the surface of the 3D model. One of

the most popular acceleration structures for ray tracing is the

Bounding Volume Hierarchy (BVH) of Axis Aligned Bounding

Boxes (AABBs) [4].

In this paper we present a simple and efficient method for

compact vertex coordinates and BVH storage which is dedicated

for convenient ray tracing queries on modern GPU (our geometry

compression is optimized for GPU ray tracing target unlike

general compressed geometry/mesh representations by Deering

and Chow [8] [9]). We spend an average of 15.5bytes per triangle

for vertex coordinate and BVH data storage. This allows spending

750-950MB (for vertex coordinates and BVH) of GPU memory to

ray trace 50-60 million triangle models (see Figure 1) which are

common for wide range of CAD visualization tasks. Several

features of NVIDIA CUDA platform [7] which are implemented

in hardware are used to simplify and accelerate our data

decompression method. Our basic approach is quantization of

vertex coordinates in the limited space of bounding box.

2. ALGORITHM

Every node of the BVH contains the AABB and the link to the

pair of children nodes (the BVH leaf contains the link to the

primitives).

Figure 1: The scene contains 58M triangles and is rendered on

GTX 480 with 1.5GB memory: 3 area light sources, specular or

diffuse reflections (the maximum ray path length is 3). The image

is rendered progressively at 1024x768 (every image pass takes

130ms to render).

As the rays are usually non-coherent this may result in a non-

coherent memory access for the threads within the same CUDA

warp. When the rays processed by the same CUDA warp access

non-coherent data the best way to improve the memory access

time is to access the data packed in float4 or int4 elements (basic

16byte CUDA types). The memory access time is further

improved when we use CUDA textures [7]:

 float4 elem = tex1Dfetch(texAABBdata, addr);

BVH data layout and fetching. We use the ray tracer

implementation similar to the one by Aila and Laine [1]. The ray

traverses through the binary BVH where two sibling nodes are

stored together (the top root node is not stored; see Figure 2, left

image). These 2 sibling nodes are sorted during ray traversal and

the ray prefers to descend to the closest one until the leaf node is

reached. Each AABB needs 6 words to encode the box, two

sibling AABBs need 12 words to encode two boxes. During the

ray traversal we fetch these 12 words using three float4 texture

fetches (see Figure 2, array Aabbs) and then consider them as 2

boxes inside the “ray-pair of boxes” intersection.

Vertex data layout and fetching. An input triangle mesh is

converted to a quadrilateral mesh using triangle connectivity

information [3]. We process triangles one by one. Each triangle is

connected to some neighboring triangle if they share a common

edge and have the same material. From multiple candidates we

select a pair of connected triangles that form a quad with the

smallest perimeter. A quad mesh has 1.5 times less connectivity

information (four vertex links per quad) than corresponding

triangle mesh (six vertex links per two triangles).

Every new scene primitive has 4 vertices and one shared edge.

Such a quad is stored as four consecutive 3D vertices (see Figure

2, array Primitives).

Figure 2: Left: hierarchical view of the BVH without root; all the sibling nodes are stored together. Right: memory representation of the

BVH and the list of primitives. Each i-th Aabb from Boxes array and i-th word from NodeInfo array forms the BVH node. The inner node

(32nd bit of NodeInfo[i] equal to zero) refers to the pair of children nodes. The leaf node (green rectangle) has 32nd bit of NodeInfo[i] equal

to one and refers to the block of five 4byte words of array LeafDecodeInfo. The first 4 words encode leaf decode matrix offset and scale,

the fifth word is casted to integer value which refers to the block of several primitives united by this leaf.

Figure 3: Geometry Quantization. The BVH leaf is enclosed into

a bounding cube and the vertex coordinates are quantized within

the range -215..215.

Vertex data compression. In the BVH generated using Surface

Area Heuristic (SAH) [6] the leaves are well separated from each

other. We assume that leaf extents are small enough compared to

the whole mesh. All the quad vertices within the leaf are

embedded into a 16-bit cube (coordinates ranging from -215 to 215)

and quantized (see Figure 3) using Mencode matrix (see the code

for quad vertex compression in the Listing 1). We then linearize

all quad vertices eliminating the connectivity information and

vertex link indirection. Each quad now takes 24 bytes (i.e. 12

bytes/triangle). Decode information is stored per leaf: float3

Center and float maxwidth components of Mdecode matrix are

stored in the first 4 words of the block allocated for this leaf in the

array LeafDecodeInfo (see Figure 2).

Vertex decompression (decoding) is very fast. We use CUDA

texture fetch whose mode is set to

cudaReadModeNormalizedFloat:
// Bind the array of linearized quads to texQuad.

texture<short4,1,cudaReadModeNormalizedFloat> texQuads;

cudaBindTexture(0, texQuads, Primitives, numPrims * sizeof(QUAD_COMPRESSED));

// Read two connected triangles (shared edge is used in intersection test to

// reduce the number of cross/dot products

float3 A, B, C, D; {

 float4 q1 = tex1Dfetch(texQuads, 3 * quadIdx);

 float4 q2 = tex1Dfetch(texQuads, 3 * quadIdx + 1);

 float4 q3 = tex1Dfetch(texQuads, 3 * quadIdx + 2);

 A = make_float3(q1.x, q1.y, q1.z);

 B = make_float3(q1.w, q2.x, q2.y);

 C = make_float3(q2.z, q2.w, q3.x);

 D = make_float3(q3.y, q3.z, q3.w);

}

With this normalized fetch mode the float values are mapped from

original short value range -215..215 to the values in the range -1..1.

The rays are specified in the world space. When we intersect them

with the BVH-leaf they are transformed to the local leaf space

(i.e. -1..1) using the Center and maxwidth components of the

Mdecode which are stored per leaf in the LeafDecodeInfo array.

16-bit quantization (16bit vertex precision within the leaf) can

encode 248 voxels in a localized BVH-leaf 3D space (assumed to

be relatively small compared to the world space). The amount of

the leaves which can be placed in the row along any of the scene

dimensions can determine the final precision of this vertex

representation. If we can place 100-250 BVH-leaves along x, y or

z scene dimension then the vertex precision would be 23-24bits in

the world space. This precision depends on the size of the AABB

of the average BVH leaf compared to the whole scene AABB.

Matrix4 CompressVertices(QUAD_COMPRESSED * outLeafQuads, QUAD * inLeafQuads,

 int numQuads)

{

 AABB SBox = make_aabb();

 for(int i = 0; i < numQuads; i++) {

 Extend(SBox, inLeafQuads[i].A);

 Extend(SBox, inLeafQuads[i].B);

 Extend(SBox, inLeafQuads[i].C);

 Extend(SBox, inLeafQuads[i].D);

 }

 // Scale data

 float3 Center = (SBox.Min + SBox.Max) * 0.5f;

 float3 Size = SBox.Max - SBox.Min;

 float maxwidth = max(Size.x, max(Size.y, Size.z));

 // geometry is stored in a 16bit quantization

 // space in a cube [-32K,-32K,32K] .. [32K,32K,32K] with a center at [0,0,0]

 Matrix4 Mencode = scale(65534.0f / maxwidth) *

 translate(-Center.x, -Center.y, -Center.z);

 // used to get the original position of object during ray traversal

 Matrix4 Mdecode = translate(Center.x, Center.y, Center.z) * scale(maxwidth);

 // optimized vertex coordinates

 // (shift and scale the vertices to the local compression space)

 for(int i = 0; i < numQuads; i++) {

 outLeafQuads[i].A = make_short3(transformPoint(Mencode, inLeafQuads[i].A));

 outLeafQuads[i].B = make_short3(transformPoint(Mencode, inLeafQuads[i].B));

 outLeafQuads[i].C = make_short3(transformPoint(Mencode, inLeafQuads[i].C));

 outLeafQuads[i].D = make_short3(transformPoint(Mencode, inLeafQuads[i].D));

 }

 return Mdecode;

}

Listing 1: Code fragment for compressing quad vertices of the

BVH leaf.

0 1

2 3 6 7

4 5 8 9

10 11

IAABB * Aabbs

Aabb[0] Aabb[1] Aabb[2] Aabb[3]

store as short4
fetch as float4

store as short4
fetch as float4

store as short4
fetch as float4

int * NodeInfo

short * Primitives

float * LeafDecodeInfo

Leaf Matrix offset
and scale

Link to the block of
primitives

Leaf info baseLeaf info base Leaf info base

Inner node link

…

…

…

…

vertexA vertexB vertexC vertexD

fetch as float4 fetch as float4 fetch as float4

Quad[0]

Quad0

Quad1

Quad2

Quad3

Quad4

-32K

-32K

32K

32K

Figure 4: Dragon, PowerPlant and Lucy rendered with 3 light sources and enabled compression mode. No any visible artifacts/cracks.

We have tested this simple vertex coordinate compression with a

variety of large 3D models (CAD scenes, laser scanned objects,

etc.) and have not observed any cracks between the leaves of the

leaves of the BVH.

Although, the cracks are possible for small models which contain

the primitives with large extents. Example: two primitives are

connected in the original mesh. When the BVH is generated the

primitives fall into different leaves. These leaves have

independent bounding cubes (which are used for quantization, see

Figure 3). For large extent primitives (compared to the scene

extent) this can be the reason of visible cracks between the leaves

of the BVH.

In our scenes we can mix the models which have 32-bit vertex

precision or reduced vertex precision.

BVH data compression. For large models which contain several

tens of millions of polygons we generate the SAH-based BVHs

with up to 16 quads (equal to 32 triangles) per leaf. These “fat”

leaves reduce the BVH size (the arrays Aabbs, NodeInfo and

LeafDecodeInfo are smaller if the leaves have more primitives).

Speculative ray traversal [1] has more effect (compared to non-

speculative) for the BVHs with “fat” primitives.

We also apply a 16bit quantization to the plane coordinates of the

AABB. Each of the 6 plane coordinates is stored in a 2byte word.

This encoding is done similarly to the vertex data encoding: all

the world-space bounding boxes of the BVH-leaves are embedded

into a global 16bit bounding cube (similar to the one on the Figure

3). All the BVH bounding boxes are stored using short data type.

Ray traversal decodes the AABBs using the same normalized

texture fetch mode which converts the data stored in short type to

the float type.

With this quantization the short representation bounding boxes

can be slightly extended compared to the boxes computed

originally with float type. This extension may result in a few more

ray-primitive intersection tests during the course of ray traversal.

3. RESULTS

We test the implementation of our compression method using

CUDA 3.2, 64bit WindowsXP and GTX480 card (with 1.5GB of

memory where only 1.3GB can be allocated with cudaMalloc).

The BVH is built offline using the Surface Area Heuristic (SAH)

[6]. All the scenes are rendered with 1024x768 images resolution

with 3 area light sources and 3 bounce rays.

Figure 1 represents the 58M triangle scene (a PowerPlant with

13M triangles, a Lucy model with 28M triangles, a Thai model

with 10M triangles and a Dragon model with 7M triangles). In a

compressed mode we spend 900MB for BVH storage (max 16

quads / leaf) and vertex data storage (which result in 15.5 bytes

per triangle storage). Without this kind of memory optimization

this kind of model could consume up to 2.7GB of storage which

can’t fit into GTX480 memory.

 non-compressed

(4 triangles / BVH

leaf)

compressed

(quads + quantization

+ 16quads/BVH leaf)

Storage,

MB

Render,

ms

Storage,

MB

Render,

ms

Dragon,7M triangles 420 45 109 51

Thai, 10M triangles 600 47 155 55

PowerPlant, 13M

triangles

780 97 201 110

Lucy, 28M triangles 1680 n/a 434 65

All together, 58M

triangles

3480 n/a 900 130

Table 1: Non-compressed vs. compressed stats.

In Table 1 we present comparison statistic for two modes: non-

compressed (36 bytes for vertex data storage per triangle, 28 bytes

for AABB storage, 4 triangles per BVH leaf) and compressed

(grouping into quads, quantization and 16 quads per BVH leaf).

In the non-compressed mode each triangle requires up to 60 bytes

to store the vertices and acceleration structure. Because of this we

can’t ray trace the models larger than 13M triangles on a 1.5GB

graphics card.

With a maximum of 32 quads per primitive we can reduce the

storage by 5% and decrease the ray tracing time by another 10%.

With a compression mode enabled we have 3.9x compression rate

for the data storage and 10% slower ray tracing (if we compare

render timings for PowerPlant and Dragon which both fit into

GPU for both compressed/non-compressed modes). However,

compressed-mode allows loading the model with 60-70M

triangles to the GPU.

When compression mode is switched the amount of data to be

accessed is reduced and there should be less influence of data

access BW on the ray tracing time. But at the same time we have

increased the number of primitives per BVH leaf from 2 quads (4

triangles) per leaf till 16 quads per leaf: the average number of

ray-primitive intersection tests per ray was increased by 90%.

Instead of 2x slowdown we got 10% slowdown for models that fit

into memory (for both modes) because of the more utilization of

GPU computation units per memory access units. This simple

experiment confirms that for GPU it can be better to store less and

compute/recomputed more.

Potential improvement. The advantage of our approach is its

simplicity compared to the hierarchical AABB compression [2],

[5] which is harder to implement on GPU. Though, in the future

we would like to experiment with such compression methods as

well as with the larger primitive (not quad, but a triangle fan or

“cluster” [3]).

Another interesting direction of future work would be to compress

the dataset on the GPU as well as acceleration structure generation

on the GPU.

4. CONCLUSION

In this paper we have presented a simple method to compress the

vertex coordinates dataset and the bounding volume hierarchy by

almost 4x and keep efficient ray tracing at the same time. This

method allows rendering 4x larger models on the same GPU at

low implementation cost.

5. AKNOWLEDGEMENTS

This work was supported by the Russian Leading Scientific

Schools Foundation, project NSh- 8129.2010.9, RFBR, grants 10-

01-00302.

6. REFERENCES

[1] Aila T., Laine S.: Understanding the Efficiency of Ray

Traversal on GPUs. In Proc. of High Performance Graphics

(2009).

[2] Fabianowski B. and Dingliana J.: Compact BVH Storage for

Ray Tracing and Photon Mapping. Proceedings of the 9th

Eurographics Ireland Workshop, Dublin, Ireland, 2009.

[3] Garanzha K.: The Use of Precomputed Triangle Clusters for

Accelerated Ray Tracing in Dynamic Scenes. Proceedings of the

Eurographics Symposium on Rendering 2009, Girona, Spain,

2009.

[4] Kay T., Kajiya J.: Ray tracing complex scenes. In Proc. of

SIGGRAPH (1986), 269–278.

[5] Mahovsky J.: Ray Tracing with Reduced-Precision Bounding

Volume Hierarchies. PhD thesis, University of Calgary, Calgary,

Alberta, Canada, 2005.

[6] MacDonald J., Booth K.: Heuristics for ray tracing using

space subdivision. The Visual Computer 6, 3 (1990), 153–166.

[7] NVIDIA. 2011. NVIDIA CUDA Programming Guide

Version 4.0.

[8] Chow M.: "Optimized Geometry compression for real-time

rendering", Proceedings on the IEEE Visualization'97.

[9] Deering M.: "Geometry Compression", Computer Graphics,

1995, 13-20.

